Electricity Load Forecasting by Combining Adaptive Neuro-fuzzy Inference System and Seasonal Auto-Regressive Integrated Moving Average

Authors

  • Chahkoutahi, F. Department of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran
  • Khashei, M. Department of Industrial and Systems Engineering, Isfahan University of Technology, Isfahan, Iran
Abstract:

Nowadays, electricity load forecasting, as one of the most important areas, plays a crucial role in the economic process. What separates electricity from other commodities is the impossibility of storing it on a large scale and cost-effective construction of new power generation and distribution plants. Also, the existence of seasonality, nonlinear complexity, and ambiguity pattern in electricity data set makes it more difficult to forecast by using the traditional methods. Therefore, new models, computational intelligence and soft computing tools and combining models are the most accurate and widely used methods for modeling the complexity and uncertainty in the data set. In this paper, a parallel optimal hybrid model using computational intelligence tools and soft computations is proposed to forecast the electricity load forecasting. The main idea of this model is the use of the advantages of the individual models in the modeling of complex systems in a structure and elimination of  the limitations of them, simultaneously. The experimental results indicate that the proposed hybrid model has a higher performance accuracy in comparison to iterative suboptimal hybrid models and its computational cost is lower than the other hybrid models; also, the proposed model can achieve more accurate results, as compared with its component and some other seasonal hybrid models.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Comparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model

Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...

full text

Using a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting

Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...

full text

Using a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting

Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...

full text

comparison of arima, fuzzy regression and fuzzy auto regressive integrated moving average methods in price forecasting

abstract nowadays, due to the environmental uncertainty and rapid development of new technologies, economic variables are often predicted by using less data and short-term timeframes. therefore, prediction methods which require fewer amounts of data are needed. auto regressive integrated moving average (arima) model and artificial neural networks (anns) need large amounts of data to achieve acc...

full text

Hybrid Fuzzy Auto-Regressive Integrated Moving Average (FARIMAH) Model for Forecasting the Foreign Exchange Markets

Improving forecasting especially time series forecasting accuracy is an important yet often difficult task facing forecasters. Fuzzy autoregressive integrated moving average (FARIMA) models are the fuzzy improved version of the autoregressive integrated moving average (ARIMA) models, proposed in order to overcome limitations of the traditional ARIMA models; especially data limitation, and yield...

full text

Electrical Load Forecasting using Adaptive Neuro-Fuzzy Inference System

Electrical load forecasting is well-known as one of the most important challenges in the management of electrical supply and demand and has been studied extensively. Electrical load forecasting is conducted at different time scales from short-term, medium-term and long-term load forecasting. Adaptive neuro-fuzzy inference system is a model that combines fuzzy logic and adaptive neuro system and...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 38  issue 1

pages  119- 129

publication date 2019-08

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023